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We revive a strategy of Delves to precondition a spectral calculation using
an almost-diagonal Galerkin matrix. We also show that hyperasymptotic
singular perturbation theory is a specialization of the Delves–Freeman itera-
tion to a single step with a diagonal Galerkin matrix. We calculate the first
three orders in the hyperasymptotic expansion of the radiation coefficient of
the weakly nonlocal envelope solitary waves of the third-order nonlinear
Schroedinger (TNLS) equation, which is important in fiber optics telecommu-
nications and water waves. In a long appendix, it was necessary to develop
some non-numerical but numerically essential additions to the theory of the
TNLS equation: Good numerics often requires a much deeper understanding
of a problem than the generation of a string of power series coefficients. Q 1997

Academic Press

1. INTRODUCTION

Our goal is to compute spatially periodic solutions to the nonlinear boundary
value problem
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Qxx 1 uQu2 Q 2 iQxxx 5 0. (1.1)

Each branch of periodic solutions is a two-parameter family where the constant «
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FIG. 1. (a) TNLS nanopteroidal wave, dnoidal-like branch. Re(Q(X)) is graphed for « 5 1/10 and
a spatial period of 333.323. (b) Same as (a) except the cnoidal-like branch is illustrated.

and the spatial period P are the parameters. (By convention, « . 0 and this will
be implicitly assumed throughout the rest of the article.) The parameter « ! 1 for
the calculations described here. When « ! 1, the solutions are dominated by a
‘‘core’’ peak on each period which is approximately

Q p 6« sech(«X), « ! 1. (1.2)

However, the large peaks or troughs do not decay to zero but rather to oscillatory
wings of amplitude a(«; P) (Fig. 1). The waves are said to be ‘‘weakly nonlocal’’
[7–10].

Equation (1.1) is the stationary form of the third-order nonlinear Schroedinger
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TABLE I
A Selected Bibliography of Weakly Nonlocal Envelope Solitary Waves

Reference Equation Remarks

11 TNLS Initial value solutions; observed one-sided radiative
decay

1 TNLS Double-humped solitons with a 5 0 (‘‘bions’’); connec-
tion with wave caustics and Eckhart resonances in in-
ternal water waves; nanopteroidal waves

12 TNLS Complex plane matched asymptotics
13 TNLS Computation of a through conservation laws and self-

consistent iteration in Fourier space
14 TNLS Dark solitons in the normal dispersion regime
15, 16 TNLS Inverse scattering-based perturbation theory
17 TNLS Theoretical analysis of bions and other bound states of

nonlocal envelope solitons
18 TNLS Numerical computation of bions for the discrete parame-

ters for which a 5 0; applications in fiber optics
19 TNLS Simplified and heuristic evaluation of a up to an O(1)

multiplier
20 TNLS Modulational (‘‘sideband’’) instability and recurrence
21, 22 MB Computes the discrete parameter values where a 5 0 so

that a classical soliton exists.
23 Lattice–KG Derives NLS, coupled pair of NLS, and TNLS models

for waves on a lattice
24 KG Numerical
25 TNLS Hyperasymptotics
26 TNLS Complex-plane matched asymptotics
27 TNLS Construction of bound states by matched asymptotic

expansions

Note. TNLS, third-order cubic Schroedinger equation; MB, Maxwell–Block equations of self-induced
transparency; KG, Klein–Gordon equation.

equation (TNLS) which describes the envelope of nonlinear wave packets. It differs
from the nonlinear Schroedinger (NLS) equation only through the presence of the
third derivative.

The TNLS equation and closely related equations that also describe ‘‘weakly
nonlocal’’ envelope solitary waves have been studied by many authors (Table 1).
Akylas and Kung [1] apply this equation to describe caustics and Eckhart resonances
in internal waves, and note that envelope solitons have been observed in ship
wakes [2].

Envelope solitons, modelled by either the NLS or the TNLS equation, may carry
digital signals in fiber optics for long distance telecommunication. Glass [3] predicts
that ‘‘solitons, with all of their advantages, are expected to find their way into
commercial systems before the end of the decade.’’ Good reviews of solitons-in-
fiber are also given by Hasegawa [4], Drummond et al. [5], and Desurvire [6].
Optical solitons of minimal energy occur for wavelengths on the boundary between
‘‘regular’’ and ‘‘anomalous’’ dispersion. This parametric region is precisely where
the NLS equation must be replaced by the TNLS equation.
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The TNLS equation has two families of periodic solutions with one large peak
or trough on each spatial period (Fig. 1). By analogy with the corresponding solutions
of the NLS equations, these may be dubbed the ‘‘dnoidal’’ and ‘‘cnoidal’’ families
of solutions. The dnoidal family has core peaks which are all positive whereas the
cores of the cnoidal branch alternate peaks and troughs. Because the solutions for
both families are very similar when the spatial period P is large compared to the
width of the core, as will always be assumed here, we shall solve only for the
dnoidal family.

The limit that the spatial period P ⇒ y yields a ‘‘weakly nonlocal solitary’’ wave
or ‘‘nanopteron.’’ This has only a single large peak (or trough) plus oscillatory
wings filling all of space. When P is large, the spatially periodic solutions agree
with the nonlocal soliton to within an error that decreases exponentially with P on
the interval X [ [2P/2 1 d, P/2 2 d] where d is small compared to P but otherwise
arbitrary. Consequently, we can compute the nanopteron by computing its spatially
periodic generalization (‘‘nanopteroidal wave’’) instead.

Spatially periodic solutions are of some physical interest in and of themselves.
However, in this article the primary goal will be to compute nanopterons (on the
infinite interval) by calculating spatially periodic solutions which approximate the
infinite interval solutions of the same differential equation (1.1) with the same
parameter «.

In place of the spatial period P, the nanopteron has a degree of freedom F,
the ‘‘far field phase factor,’’ which controls the amplitude and phase of the wing
oscillations without having much effect on the core. For nanopteroidal waves, the
spatial period P is equivalent to the phase parameter F for the equivalent nanopt-
eron; the far field phase F must take a definite value F(P) so that the oscillations
radiating from the core centered at X 5 0 will match smoothly to the oscillations
radiating from the neighboring core at X 5 P. The physically interesting F is that
which minimizes the amplitude of the wing oscillations for a given amplitude of
the core « [26, 10].

To obtain this relationship between F and P, it is necessary to compute the
eigenfunctions of the linearized form of (1.1) as done in Appendix B. For the
numerical problem of solving (1.1), the only purpose of the eigenfunction analysis
is to furnish the physically interesting spatial period P.

Singular perturbation theories show that the minimum amplitude of the oscillatory
wings for a given « is of the form [12, 26]

amin(«) p n0(1 1 n1« 1 n2«
2 1 ? ? ?) expS2

f
4«
D, « ! 1. (1.3)

Unfortunately, determining the constants n0 , n1 , n2 , etc., is very difficult. The leading
constant has been calculated by several groups [12, 26], always by a mixture of
analytical approximations and numerical work. (It seems to be well-nigh impossible
to obtain a closed-form approximation to n0 , for this or any other case of ‘‘weakly
nonlocal solitary waves.’’) In this work, we obtain the next two terms by solving the
nonlinear boundary value problem to very high accuracy using a Fourier–Galerkin
method and then fitting the results to the form of Eq. (1.3).
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We have been obliged to inflict all this background about nonlocal solitary waves
on the reader because the TNLS physics greatly challenges the numerical algorithm.
First, the spatial period P must be large compared to 1/«, or otherwise the exponen-
tially decaying tail of one core peak will overlap that of its nearest neighbor so as
to swamp the wing oscillations and destroy the approximation of the nanopteron
by its spatially periodic generalization. Second, the problem is nonlinear and con-
tains two disparate spatial scales (1/« and P). Third, it must be solved to very high
accuracy. The reason is that amin decays exponentially fast as « ⇒ 0, so a solution
for « 5 1/20 has wing oscillations which are a thousand trillion times smaller than
the amplitude of the core!

A Fourier spectral method can provide the needed accuracy with a modest
number of degrees of freedom N. Furthermore, we can exploit the symmetries of
(1.1)—the real part of the solution is symmetric with respect to X 5 0 while the
imaginary part is of antisymmetric parity—to halve N. However, we still need
N . 1000, and the Fourier collocation and Galerkin matrices are dense matrices
with almost every element nonzero.

The best way to reduce cost is to replace Newton’s iteration by a quasi-Newton
scheme. By using fast Fourier transforms, the residual, which is the result of substi-
tuting the current iterate into the differential equation, can be evaluated in only
O(N log2(N)) operations. The costly step is computing the LU factorization of the
Jacobian matrix, which is the spectral discretization of the linearization of the
nonlinear equation with respect to the current iterate. The Jacobian matrix requires
O(N 2) storage and its factorization costs about O([2/3] N 3) operations. The key is
to approximate the dense Jacobian matrix by a sparse matrix which is an order of
magnitude cheaper to store and factorize.

The usual strategy is to approximate the Jacobian matrix by a finite difference
or finite element discretization of the same linearized differential equation [29–32].
This ‘‘finite difference preconditioning’’ requires that the spectral residual must be
transformed to the points of an associated interpolation grid so that the underlying
algorithm is a pseudospectral or collocation scheme.

In this work, we approximate (or ‘‘precondition’’) the Jacobian matrix in a Galer-
kin framework by using an ‘‘almost diagonal’’ Fourier–Galerkin matrix. In this
scheme, developed by Delves [38] and Delves and Freeman [28], all off-diagonal
matrix elements, except a few that couple the ‘‘important’’ modes, are discarded
to create the preconditioner. In most applications, the ‘‘important’’ modes are
simply those of low degree. Here, however, there is a resonance between high
wavenumber and low wavenumber which is responsible for the oscillatory wings.
The resonance implies that the Fourier modes whose wavenumbers approximately
match those of the wings may be ‘‘important,’’ too. In any event, neglecting all but
the low-or-resonant wavenumbers gives a sparse approximate Galerkin matrix
which is cheap to factor. We shall show below that the quasi-Newton iteration still
converges rapidly. Because no approximations are made in evaluating the residual,
the Delves–Freeman iteration converges to an answer which is accurate to full
spectral accuracy, the same as if one had used an ‘‘honest’’ Newton’s method that
calculated and factored a dense Jacobian matrix at each iteration.
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2. THE FOURIER–GALERKIN ALGORITHM

Because the solutions are spatially periodic, the sines and cosines of an ordinary
Fourier series are the most efficient basis functions. As explained in Appendix A,
all solutions computed here have the property that the real part of Q(X) is symmetric
with respect to X and the imaginary part is antisymmetric. With this symmetry
assumption, nanopteroidal waves can be computed through the Fourier expansion

Q(X) 5 ON21

j50
aj cos( jX/L) 1 i ON

j51
bj sin( jX/L), (2.1)

where the spatial period P 5 2 f L and where the cosine and sine coefficients are
real. (Asymmetric solutions, perhaps with multiple cores of slightly different sizes,
may well exist; to compute them, it is only necessary to include sines and cosines
for both the real and imaginary parts.) Writing Q 5 Qr 1 iQim , the reduced TNLS
equation (1.1) can be reduced to the coupled pair of real-valued equations:

2As«2Qr 2 «2Qim,X 1 AsQr,XX 1 (Q2
r 1 Q2

im)Qr 1 Qim,XXX 5 0
(2.2)

2As«2Qim 1 «2Qr,X 1 AsQim,XX 1 (Q2
r 1 Q2

im)Qim 2 Qr,XXX 5 0.

The Newton–Kantorovich iteration to solve these is

J(Q(m)) D(m) 5 2r(Q(m)), Q(m11) 5 Q(m) 1 D(m), (2.3)

where the inhomogeneous linear differential equation is solved repeatedly until the
correction D is sufficiently small. The Jacobian operator J is the linearization of
the system (2.2) with respect to the current iterate,

J(Q) D ;H2As«2 Dr 2 «2 Dim,X 1 AsDr,XX 1 (3Q2
r 1 Q2

im) Dr 1 2QrQim Dim 1 Dim,XXX

2As«2 Dim 1 «2 Dr,X 1 AsDim,XX 1 (Q2
r 1 3Q2

im) Dim 1 2QrQim Dr 2 Dr,XXX

,

(2.4)

and the residual is the result of substituting the previous iterate into the differen-
tial equation

r(Q) ;H2As«2 Qr 2 «2Qim,X 1 AsQr,XX 1 (Q2
r 1 Q2

im)Qr 1 Qim,XXX

2As«2 Qim 1 «2Qr,X 1 AsQim,XX 1 (Q2
r 1 Q2

im)Qim 2 Qr,XXX

(2.6)

The residual can be evaluated in O(N log2(N)) operations by the fast Fourier
transform [29, 31, 33]. The Galerkin integrals were approximated by numerical
quadrature with the number of grid points equal to the number of unknowns (of
each symmetry) although more points could be used if desired).

The differential equation is discretized by Galerkin’s method to JWWDW 5 rW where
the matrix elements are
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Jij 5 (fi , J(Q)fj), ri 5 (fi , r(Q)). (2.7)

The elements of the column vector DW are the Fourier coefficients of the correction.
The parentheses denote the L2 inner product, which is the integral of the product
of the factors inside the parentheses on the interval x [ [0, P/2]. (Because of
the symmetry, it is sufficient to integrate over half the spatial period.) The basis
functions are

f2 j(x) 5 cos( jx), j 5 0, 1, ..., N/2 2 1; f2 j21(x) 5 sin( jx), j 5 1, 2, ..., N/2. (2.8)

The iteration requires a first guess. The lowest perturbative approximation

Q(0)(X) 5 « sech(«X) (2.9)

was always a sufficiently good guess that Newton’s iteration converged.
Two major technical problems remain. The first is that the factorization of the

dense Jacobian matrix is very expensive. It is possible to enormously reduce the
cost by using the Delves–Freeman iteration (next section).

The second problem is peculiar to weakly nonlocal solitary waves: What choice
of spatial period P for the Fourier computation yields good approximations to the
infinite interval solutions of physical interest, which are those which have the small-
est oscillatory ‘‘wings’’? This question is answered by the eigenfunction analysis of
Appendix B. We have banished this to an appendix because, to solve the numerical
problem, we need only the result: the spatial period P. Actually, an infinite set of
discrete periods P are suitable, each differing from one another through an integral
multiple of the wavelength of the ‘‘wings’’ of the nanopteron.

3. THE DELVES–FREEMAN ITERATION

Delves [38] developed a fast iteration scheme which is explained at length in the
monograph by Delves and Freeman [28]. The key idea is most easily explained by
using a simple example which is not directly related to the TNLS equation,

uxx 1 Q(x)u 5 f (x), (3.1)

with the boundary condition that u(x) is periodic with period 2f where uQ(x)u is
bounded by a constant which for simplicity will be assumed to be one. To simplify
the analysis further, assume that Q(x) and f (x) and therefore u(x) are all symmetric
with respect to the origin so that the solution is a cosine series (as opposed to a
general Fourier series). The Fourier–Galerkin representation of (3.1) is then the
matrix problem

LWWaW 5 fW, (3.2)

where the elements aj and fj of the column vectors aW and fWare the Fourier coefficients
of the unknown u(x) and the forcing function f (x),
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u(x) 5 O
j50

aj cos( jx), f (x) 5 O
j50

fj cos( jx), (3.3)

and where the elements of the dense square matrix LWW are

Lij 5
2
f
Ef

0
cos(ix) H d 2

dx2 cos( jx) 1 Q(x) cos( jx)J . (3.4)

Delves and Freeman note that LWW is the sum of two simpler matrices: one whose
elements are the inner products of the basis functions with the second derivatives
of the basis functions and the other which is the inner product of pairs of basis
functions with Q(x). The critical point is that because the second derivative of
cos( jx) is simply 2j 2 cos( jx) and because the cosines are orthogonal, the Galerkin
matrix for the second derivative is diagonal,

Lij 5 Dij 1 Qij (3.5a)

Dij 5 2j 2 di j (3.5b)

Qij 5
2
f
Ef

0
cos(ix)Q(x) cos( jx) dx, (3.5c)

where di j is the usual Kronecker delta function, equal to one when its subscripts
are equal and zero otherwise.

If the matrix LWW were really diagonal, then

aj 5 fj /Ljj . (3.6)

Unfortunately, the matrix is actually the worst possible case, a dense matrix, because
of the Qij . However, our assumption that Q(x) is bounded by unity implies

uQ(x)u # 1 ⇒ uQiju #
2
f

. (3.7)

However, the elements of the diagonal matrix DWW are growing as

Djj 5 2j 2. (3.8)

It follows that as j increases, the jth row and the jth column of the full matrix LWW

will be more and more dominated by the diagonal element.
Unfortunately, this is not necessarily true for small j where both the diagonal

and off-diagonal elements are the same order. The proper assertion is that the
Fourier–Galerkin matrix is ‘‘weakly asymptotically diagonal’’ in the sense defined
by Delves and Freeman [28]. This means that the jth row and column is not
necessarily dominated (in magnitude and importance) by Ljj for all j, but this
dominance develops with increasing strength in the asymptotic limit j ⇒ y.

Thus, Delves [38] approximated the Galerkin matrix by a matrix composed of
the diagonal plus a full upper left block. The dense block accounts for those few



673HYPERASYMPTOTIC METHOD FOR NONLOCAL SOLITARY WAVES

rows and columns where the off-diagonal and diagonal elements are the same order
of magnitude. The elements of the approximating matrix LWW (approx) are

L(approx)
i j ;HLij , i # ND and j # ND

di jLij , i and/or j . ND

. (3.9)

The size of the ND 3 ND block is user-choosable; the larger the block, the better
the approximation of LWW, but the greater the cost,

LU factorization of LWW (approx) P (2/3)N 3
D 1 O(N) floating point operations, (3.10)

where N is the truncation of the Fourier–Galerkin matrix and therefore the dimen-
sion of both LWW and LWW (approx).

If ND ! N, then the cost of solving a matrix equation with a block-and-diagonal
matrix is only a little more than that of a diagonal matrix. The critical question is,
If the Jacobian is approximated by such a block-and-diagonal matrix, does the
iteration still converge?

The answer is yes—if the block is sufficiently large. The quadratic convergence
of Newton’s iteration is lost, as it is in any procedure that is only quasi-Newton.
However, the convergence of the Delves–Freeman iteration is geometric with the
error decreasing by roughly a constant factor at each iteration.

This example (3.1) is discussed at length with graphs and tables in the author’s
book [29]. The application to the TNLS equation is very similar, but there are a
couple of interesting complications.

The first is that the TNLS solution is a sum of both sines and cosines. The odd
derivatives of sin( jx) are cosines and therefore contribute to the rows of the Galerkin
matrix where we multiply on the left by cos(ix). However, the even derivatives of
sin( jx) are sines and contribute to the rows where we multiply by sin(ix). Thus,
the linear constant coefficient terms in the differential equation strongly couple the
rows and columns corresponding to sines and cosines of the same row number. If
we order the unknowns properly, then the linear constant coefficient terms define
a Fourier–Galerkin matrix which has 2 3 2 blocks on the main diagonal. Figure 2
shows the nonzero elements for such a matrix, which we shall refer to as the
‘‘bidiagonal’’ matrix.

Thus, the Delves–Freeman matrix LWW (approx) has the block-plus-bidiagonal structure
illustrated in Fig. 3. However, the bidiagonal matrix can be solved in O(N) opera-
tions, so the cost estimate (3.10) still applies.

The second complication is that in the ‘‘far field,’’ that is, uXu @ 1 where the
nonlinear term in the TNLS equation can be neglected, the linear terms cancel for
wavenumber K 5 21/2 so that exp(2iX/2) is an approximate solution of the
differential equation. For the Fourier basis with hcos( jX/L), sin( jX/Lj as the basis
functions, this implies that for mode number j close to

jres ; L/2 (3.11)



674 JOHN P. BOYD

FIG. 2. Schematic of the nonzero matrix elements (disks) of the bidiagonal matrix which is the
Fourier–Galerkin discretization of the linear terms in the TNLS equation.

the bidiagonal matrix will have small eigenvalues and will not dominate the matrix
elements of the linearized nonlinear terms in the TNLS equation, which are analo-
gous to the Qij for (3.1). This suggests that it may be necessary to generalize the
Delves–Freeman strategy by also retaining rows and columns of the matrix for
basis functions such that j P jres .

Surprisingly, however, the Delves–Freeman iteration works well for the TNLS
equation even without special treatment of the near-resonant basis functions. Figure
4 is the norm of the residual versus the iteration number. On this log/linear plot,
geometric convergence is a curve that asymptotes to a constant linear slope. New-
ton’s iteration, which is a full recomputation and factorization of the dense, un-

FIG. 3. Schematic of the Delves–Freeman approximate Jacobian. It is identical to the bidiagonal
matrix shown in Fig. 2 except for a dense block in the upper left corner, in this case a 5 3 5 block
(ND 5 3).
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FIG. 4. The decay of the Ly norm of the residual vector versus the iteration number. No underrelax-
ation was used. All cases were initialized with Q 5 « sech(«X), which is lowest order perturbation
theory. Solid curves: full, dense Jacobian matrix. The lower curve, which passes below the axis after
only four iterations, is the standard Newton’s method (labelled ‘‘Newton’’); the upper solid curve
(labelled ‘‘Full matrix/one Jacobian computed’’) is the same except that the Jacobian matrix is computed
and factored just once into the product of a lower triangular matrix L and an upper triangular matrix
U, and these are reused for the remaining iterations. The dashed thin line and the symbols denote
Delves–Freeman iterations with a single computation of the Jacobian, identical except for block size.
Circles (top of graph, diverges): ND 5 2 (3 3 3 upper left block). Crosses (convergent, but very slowly):
ND 5 4 (7 3 7 block). Asterisks: ND 5 6 (11 3 11 block). Dashed line: ND 5 8 (15 3 15 block). The
spatial period divided by 2f is L 5 31.503; « 5 1/10.

approximated Jacobian at each iteration, is shown for comparison; its quadratic
convergence appears as the sharp downward ever-increasing slope. This rate of
convergence is ‘‘digit-doubling’’ in the sense that the number of correct digits
roughly doubles at each iteration. Newton’s method needs far fewer iterations than
the Delves–Freeman iteration, but is much more expensive.

In contrast, the other cases applied the cheapest option: the Jacobian is just
computed once, there is no underrelaxation, and the full Jacobian matrix is approxi-
mated by a block-and-bidiagonal matrix with various sized blocks as indicated by
the numbers labelling each curve. The bidiagonal approximation (not shown) and
also ND 5 2, which is a 3 3 3 block, diverge. However, when ND ^ 6, which is an
upper left 11 3 11 block, the preconditioned iteration converges geometrically.

The second striking conclusion is that if the Jacobian matrix is computed only
once, the rewards for using the full Jacobian matrix are modest indeed: There is
only a slight improvement as the size of the upper left block is increased beyond
11 3 11.

The size of the block which is needed for convergence, and the slightly larger
size which is optimum for minimizing cost, are highly problem dependent and
resolution dependent. (As evident in Table 2, N must increase as « decreases; ND

must increase, too, as shown by comparing Figs. 4 and 5, which are the same except
for smaller « in Fig. 5.) However, it is generally true that one obtains fast, geometric
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TABLE II
amin versus «, Third-Order Nonlinear Schroedinger Equation

« anumerical aWLC L N

1/10 3.14774E-3 5.09606E-3 81.5093 256
9/100 1.57871E-3 2.12932E-3 131.458 384
8/100 5.96415E-4 7.15318E-4 131.407 384
1/15 9.02336E-5 1.00407E-4 121.340 384
2/35 1.30622E-5 1.40938E-5 201.291 384
1/20 1.86787E-6 1.97831E-6 201.255 384
2/45 2.65467E-7 2.77689E-7 201.226 384
1/25 3.75910E-8 3.89783E-8 219.204 512
2/55 5.31049e-9 5.47127E-9 301.185 640
1/30 7.49039E-10 7.67985E-10 401.170 640
2/63 2.31147e-10 2.36435E-10 380.162 640
1/33 7.13069E-11 7.27898E-11 401.154 640
2/69 2.19918E-11 2.24094E-11 451.147 1024
1/36 6.78101E-12 6.89903E-12 501.141 1024
1/38 1.41215E-12 1.43417E-12 551.134 1024
1/40 2.94006E-13 2.98134E-13 601.127 1024

Note. aWLC 5 13.1273 exp(2f/(4«)); L 5 odd integer 1 (16/f) «; N is the number of grid points; the
total number of unknowns is 2N.

FIG. 5. The decay of the Ly norm of the residual vector versus the iteration number. The figure is
identical to Fig. 4 except for smaller « (51/20). This requires much larger N (5384) both because the
spatial period must increase (to accommodate wider core peaks without overlap) and also to accurately
compute a, which decreases exponentially with 1/«. Solid curve (‘‘quasi-Newton’’): full, dense Jacobian
matrix, which is computed and LU-factored just once. The dashed thin line and the symbols denote
Delves–Freeman iterations with a single computation of the Jacobian, all identical except for block
size. Circles (top of graph, diverges): ND 5 8 (15 3 15 upper left block). Crosses (convergent, but
slowly): ND 5 12 (23 3 23 block). Asterisks, plus signs, dashed line (‘‘16, 20, 24’’): ND 5 16, 20, and
24. (These three curves are almost on top of one another.) The spatial period P 5 1264.52 (L 5 201.255).
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FIG. 6. Three variations on the Delves–Freeman iteration, all with ND 5 6 (11 3 11 upper left
block in the approximate Jacobian matrix). Solid curve: The (sparse) Jacobian was recomputed and
factored at every iteration, and underrelaxation with t as small as 1/16 was also used. Circles: The
Jacobian was computed just once, but again underrelaxation with t as small as 1/16 was employed.
Crosses: The Jacobian was computed only once and t 5 1 always; that is, the full quasi-Newton correction
was applied at every iteration without underrelaxation. The spatial period divided by 2f is L 5 31.503;
« 5 1/10.

convergence from a block size which is small compared to the matrix dimension.
The monograph by Delves and Freeman gives an extensive collection of theorems
and numerical examples that support this conclusion.

Two choices still remain: Do we recompute the block-and-bidiagonal Jacobian
at every iteration or just once? Do we underrelax? (Underrelaxation means multi-
plying the Newton correction by a constant t , 1, comparing the residuals for
various t, and choosing whichever gives the smallest residual. We set t 5 22j, j 5

0, 1, ... for this search.)
Figure 6 shows that both strategies improve the rate of convergence; unfortu-

nately, both also require many extra operations. Underrelaxation, with but a single
computation of the Jacobian, is able to reach the bottom of the graph in 30 iterations,
whereas t 5 1 needs 40. Recomputing the Jacobian at every step saves only 5
iterations. If we are blessed with a good initial iterate, as supplied here by lowest-
order perturbation theory as the approximation Q(X) P « sech(«X), then underre-
laxation and Jacobian recomputation are not worth the bother.

Figure 7a shows that the Jacobian matrix does indeed have small eigenvalues.
The V-shaped cluster of eigenvalues pointing downward to the smallest eigenvalue
is due to the resonance discussed above: exp(2iX/2) is an approximate eigenmode
of the TNLS equation. We added rows and columns to the Delves–Freeman approxi-
mate Jacobian to make no approximation for the basis functions cos( jX/L) and
sin( jX/L) such that j P jres . (Figure 8 illustrates the shape of the sparse matrix—
block-plus-bidiagonal plus a band of dense rows and a band of dense columns.)
However, this produced only slight improvements in convergence, not enough to
justify the added cost. Boyd [37] showed that for a Fourier pseudospectral algorithm
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FIG. 7. (a) Absolute values of the eigenvalues of the full (dense) Jacobian matrix. The spatial period
divided by 2f is L 5 31.503; « 5 1/10 and N 5 256. (b) Top curve: absolute values of the Fourier
coefficients of the solution Q(x). Bottom curve: absolute values of the elements of the element-wise
product of the 201st row of the full Jacobian matrix with the Fourier coefficients. (This is one of the
rows closest to the resonant wavenumber.) (Same case as (a).) (c) Absolute values of the elements of
the 201st row of the full Jacobian matrix. (Same case as (a), (b).) The two solid overlapping disks at
the top of the graph are the big elements that are part of the bidiagonal matrix. The open circles are
the much smaller elements which are not part of the bidiagonal matrix.

in which the Jacobian is approximated by a finite difference matrix, the resonance
for the fifth-order Korteweg–deVries equation considerably degrades the rate of
convergence. Why does the resonance fail to wreak harm here?

We do not have a full explanation. Delves and Freeman wrote a whole book on
the topic and yet never addressed a differential equation with resonances like the
third-order nonlinear Schroedinger equation.

What can be said is that in the product of a row of the Jacobian matrix for j P
jres with the Fourier coefficients, the two elements which are part of the bidiagonal
matrix—and therefore of the Delves–Freeman matrix without special treatment
for the resonance—dominate the contributions of the other Jacobian elements to
this vector-column product (bottom curve, Fig. 7b). Part of the reason is the rela-
tively large size of the Fourier coefficients which multiply the bidiagonal Jacobian
elements due to the spike around the resonant wavenumbers visible in the upper
curve in Fig. 7b. Another is that the elements of the bidiagonal matrix are huge
compared to the off-diagonal elements as shown in Fig. 7c. The resonance simply
is not a problem for small «.

4. HYPERASYMPTOTICS AND THE DELVES-FREEMAN ITERATION

Boyd [25] has described a mixed numerical/analytical algorithm for computing
the radiation coefficient a for the TNLS equation and others. It uses concepts
from hyperasymptotic perturbation theory, so we shall refer to it simply as the
‘‘hyperasymptotic’’ method [40].



679HYPERASYMPTOTIC METHOD FOR NONLOCAL SOLITARY WAVES

FIG. 7—Continued

One part of this scheme, which has no counterpart in the Delves–Freeman
method, is to use a high power series expansion in « to compute a very accurate
first approximation. The asymptotic but divergent series is truncated at optimal
order M(«). This gives a ‘‘superasymptotic’’ approximation whose error is O(a).
However, one can show that superasymptotic approximations decay exponentially
as uXu ⇒ y and thus completely miss the far field oscillations.

The second part of the hyperasymptotic algorithm is to apply a single iteration
with a diagonal (or bidiagonal) Galerkin matrix and an additional approximation.
Employing a bidiagonal approximation to the true Jacobian of the TNLS equation
is equivalent to approximating the linearized but variable coefficient operator (2.6)
by the constant coefficient operator

Jcc(Q) D ;H2As«2 Dr 2 «2 Dim,X 1 As Dr,XX 1 Dim,XXX

2As«2 Dim 1 «2 Dr,X 1 AsDim,XX 2 Dr,XXX

. (4.1)
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FIG. 8. The circles are the nonzero elements of the Delves–Freeman iteration matrix for a typical
case in which full rows and columns have been added to the upper-left-block-plus-bidiagonal matrix
illustrated in Fig. 3. The resonant wavenumber jres is halfway between two integers whenever the spatial
period P is chosen to give minimum amplitude amin to the oscillatory wings. Thus, the simplest modification
for resonance is shown, which is to give full rows and columns to the four basis functions hcos([ jres 6

1/2]X/L), sin([ jres 6 1/2]X/L)j.

Although it is not possible to completely solve the linear constant coefficient differ-
ential equation (4.1), there is an analytic approximation to its asymptotic, large uXu
behavior [25] which is sufficient to give the radiation coefficient a . The replacement
of the true Jacobian by the constant coefficient differential operator (4.1) limits
the accuracy of the method to the determination of n0 and n1 [25]. Thus, to compute
the O(«2) factor in a, we need something better, as done here numerically.

Still, there is a close similarity between the hyperasymptotic scheme of [25] and
the Delves–Freeman iteration in the sense that both approximate the Jacobian
operator by something simpler. Indeed, the hyperasymptotic method uses a bidiago-
nal matrix as the approximation. But how can this succeed when we have already
seen that the Delves–Freeman iteration diverges unless we include at least a small
dense block of elements?

The answer is that the upper left-hand block of the Delves–Freeman iteration
matrix couples only low-order basis functions. However, the residual of the optimally
truncated perturbation theory has negligible amplitude at low wavenumbers (small
j): the perturbation theory has purged it [25, 39]. The treatment of these modes in
the upper left corner of the Galerkin matrix for the Jacobian operator is irrelevant
because these modes have no amplitude in the perturbative residual. The residual
of the superasymptotic approximation is peaked at k 5 21/2. For this wavenumber,
the bidiagonal matrix is quite sufficient.

Boyd [25] made the claim that one could repeat the bidiagonal iteration indefi-
nitely to obtain a geometrically convergent numerical method. This claim is not
true for the TNLS equation! The bidiagonal matrix is successful only in the spirit
of an asymptotic but divergent procedure: One iteration is good, but many iterations
will fail because error will gradually build up in the low wavenumbers.
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By adding an upper left block, we have a more difficult linear algebra problem
to solve at each iteration, and it must be solved numerically rather than analytically
as in [25]. There are two rewards. First, if the block is sufficiently large, the iteration
converges! Second, it is not necessary to use high-order perturbation theory to
initialize the iteration. Instead, all calculations shown here were initialized with the
lowest-order perturbative approximation, Q(X) 5 « sech(«X).

5. NUMERICAL RESULTS: NANOPTERONS AND NANOPTEROIDAL WAVES

Figure 9 is one visualization of the exponential dependence of the radiation
coefficient a versus «. Figure 9a is a surface plot that illustrates how the shape of
the nanopteron changes as « doubles: from no visible oscillations at « 5 0.075 to
very large oscillatory wings at « 5 0.15. Figure 9b compares the shape of the
nanopteron at the extremes of the surface plot.

Figure 10 is a second visualization of the same thing: a plot of a versus 1/«. On
this semilogarithmic graph, the prediction of the matched asymptotics formula of
Wai et al. [12] is that a should asymptote to a straight line as 1/« increases with
slope 2f/4. Their formula

aWLC(«) p 13.1273 exp S2
f
4«
D , « R 0 (5.1)

is a good approximation for small « as shown by the dashed curve in Fig. 10. (Note,
however, that their n0 P 13.24 and Grimshaw’s n0 P 13.48 [26] have been replaced
by the highly accurate value from [25].) Table 2 gives the numerical results. The
spatial period P (or equivalently, L 5 P/(2f)) was chosen to give the minimum
radiation coefficient for a given «, amin(«), using the formula derived in Ap-
pendix B.

To calculate higher-order corrections to (5.1), we applied least squares polynomial
fitting. Define n(«) to be the ratio of the numerically computed radiation coefficient
to aWLC(«), that is,

n(«) ;
amin(«)

13.1273 exp S2
f
4«
D . (5.2)

The linear and quadratic coefficients in n(«) are then

n1 5 lim
«R0

Hn(«) 2 1
«

J , n2 5 lim
«R0

Hn(«) 2 1 2 n1«

«2 J . (5.3)

We compute polynomial fits to each of the quantities in braces in (5.3) and then
extrapolate to « 5 0. The fits are by polynomials of various degrees on the interval
« [ [1/40, «0] where «0 is also varied.
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FIG. 9. (a) Real part of Q(X; «) for the nanopteroidal wave with « [ [0.075, 0.15] with spatial
period P 5 100. (Because the spatial period is fixed, the wings are not the smallest far field oscillations
which are possible for a given «.) (b) Same as (a), but showing the extremes. Solid: « 5 0.15. Dashed:
« 5 0. 075.
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FIG. 10. Solid-and-circles: Numerical computations of a. Dashed-and-asterisks: aWCL ; 13.24
exp(2f/[4«]), which is the matched asymptotics prediction of Wai et al. [12]. (The two curves are almost
indistinguishable except for a slight gap on the left.) The numerical computations were actually of
nanopteroidal waves with L 5 odd integer 1 (16/f)« where the spatial period is P 5 2fL; the « factor
in L ensured that minimum a was computed for each «. P is sufficiently large so that the overlap between
adjacent core peaks is very small in comparison to a so that these results apply to nanopterons, too.

In single precision, it is not possible to compute a reliably for smaller « because
a(1/40) 5 2.9 3 10213; the wings are already smaller than the core peaks by a factor
of more than 2 billion! For « , 1/40, the wings are lost in the roundoff error of
the vastly larger core.

We must anticipate that the fit will be poor when «0 is close to 1/10 for all degrees
of the fitting polynomial since the larger values of « will be contaminated by n3 «3

and higher corrections. Since extrapolation of high degree interpolating polynomials
is notoriously ill-conditioned, we expect that errors will also be large when a fourth
degree polynomial is fitted to just five points, for example, as happens when the
upper limit of the fitted range «0 is too close to the lower range, « 5 1/40. Thus,
the most reliable estimates for n1 and n2 are likely to come when (i) «0 is in the
intermediate range and (ii) the degree of the fitting polynomial is moderate.

Figures 11 and 12 confirm these expectations. The convergence of the linear,
quadratic, and cubic fits for «0 between [0.04 and 0.06] suggests that un1u , 1/100.
Because the quadratic coefficient is much larger—roughly 222—we conjecture
that the exact value of the linear coefficient is

n1 5 0. (5.4)

Of course, we cannot prove such a conjecture from any amount of numerical
calculations, but rather merely put tighter and tighter bounds around some number
as our resolution improves. However, it seems very unlikely that the true value of
n1 would be nonzero and yet more than 2000 times smaller than the quadratic coeffi-
cient.
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FIG. 11. Estimates of n1 via polynomial fitting of values in the range [1/40, «0] where «0 is the
horizontal axis of the graph. Solid line: linear polynomial fit. Dashed line: quadratic polynomial. Circles:
third degree polynomial.

In estimating n2, we therefore set n1 5 0 in the right half of (5.3). Figure 6 shows
the resulting fits:

n2 P 222.0 to 222.2. (5.5)

Figure 13 compares the quadratic approximation, n(«) P 1 2 22.0 «2 with the
Delves–Freeman results. We have rounded off our estimate (5.5) to the nearest
integer because of the uncertainty in the digit after the decimal place.

FIG. 12. Estimates of n2 via polynomial fitting of values in the range [1/40, «0] where «0 is the
horizontal axis. x’s: constant (zero degree) polynomial fit. Solid line: linear polynomial fit. Dashed line:
quadratic polynomial. Circles: third degree polynomial.
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FIG. 13. n(«) divided by 13.1273 is shown as the solid curve with circles where the symbols mark
the data points (plus the limit at « 5 0). The dashed curve (without symbols) is the fit: n P 13.1273
(1 2 22 «2).

A higher-than-quadratic approximation is clearly needed for « . 0.06, but for
smaller values of «, the second degree polynomial gives a very good approximation.

Grimshaw and Joshi [36] have successfully applied matched asymptotics expan-
sions to compute n1 and n2 for the fifth-order Korteweg–deVries (FKdV) equation.
However, the analysis is difficult. Boyd [37] has numerically confirmed n1 , but there
is a discrepancy for n2 .

No such perturbative extension has yet been done for the TNLS equation, so n1

and n2 are calculated for the first time here. However, our TNLS results should be
sufficiently accurate to guide and to check higher ‘‘beyond-all-orders’’ asymptotics.

6. BIONS

Akylas and Kung [1] and Klauder et al. [18] computed TNLS ‘‘bions.’’ These are
bound states of solitary waves which consist of two ordinary solitary waves bound
together by the O(a) oscillations between the two cores (Fig. 14). They also observed
that for discrete parameter values, the wing oscillations of the two solitons cancelled
exactly in the far field so that the bion is a classical solitary wave. If one traces a
particular branch of the bion by varying «, the amplitude-and-width parameter,
then the wings vanish for discrete values of «. (The oscillations between the cores
do not disappear because these between-the-core oscillations are the glue that binds
the two peaks together.)

In a similar spirit, Branis et al. [21] and Branis and Martin [22] calculated radiation-
free envelope solitary waves of the Maxwell–Bloch equations. Vanden-Broeck [34,
35] did the same for water waves. Like the TNLS bions, the Maxwell–Bloch and
water wave solitons have a 5 0 only for discrete parameter values. However, their
solutions are not bions, but rather ordinary solitary waves with only a single core
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FIG. 14. A TNLS bion with « 5 1/10; the first guess was two ordinary solitons separated by 68.
This bion was approximated by computing a bion-like nanopteroidal wave on a large spatial period P.
The spatial period is P 5 2fL where L 5 61 1 (16/f)« 1 34/f, which implies the minimum far field
oscillations for this amplitude.

peak or trough. The cancellation of one soliton far field by another is clearly
not necessary for classical coherent structures to coexist with weakly nonlocal
solitary waves.

Bions are interesting because Klauder et al. [18] observe that for fiber optics
communications, it might be desirable to send pulses in the form of radiation-free
bions to minimize radiation losses. It is unclear, however, whether laser diodes can
efficiently generate such bions with widths tuned to the precise values for which
a 5 0. Furthermore, the binding between the two peaks is the shared, oscillatory
wing between them and is therefore weak. Still, communication-by-bion is an intri-
guing possibility. Figure 14 shows that the Fourier–Galerkin method works just as
well for bions as for ordinary nanopterons, which have but a single peak.

7. SUMMARY

The Delves–Freeman iteration works well for the third-order nonlinear Schroe-
dinger equation. It makes it possible to calculate the amplitude a of the oscillatory
wings that radiate from the large core of the nanopteron to spectral accuracy at
low cost. The great savings arise because it is not necessary to compute or store
the full Fourier–Galerkin matrix. Instead, it is sufficient to compute a dense upper
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left-hand block. In our experiments, this block was always less than 10% of the size
of the Galerkin matrix as a whole, representing a cost savings of O(100) in both
computing and storing the elements and in performing the LU factorization of
the matrix.

Somewhat to our surprise [37], no special treatment was needed because of the
resonance which creates the oscillatory wings of the solitary wave and simultane-
ously forces some eigenvalues of the Jacobian matrix to be small. The Delves–
Freeman iteration is quite robust and stable.

Although our problem has only a single spatial coordinate, the method generalizes
well to higher dimensions if the unknowns are ordered so that low wavenumbers
in both x and y appear as the first few rows and columns of the Galerkin matrix. (This
reordering can be done explicitly, but a good sparse matrix solver may implicitly
accomplish the same thing.) One can then approximate the full Galerkin matrix
by a block-plus-banded matrix.

Despite all these good qualities and the publication of the 1981 monograph by
Delves and Freeman [28], their method has fallen into disuse. We know of no
application more recent than the early 1980s except for a simple example in the
author’s own book [29].

This article has inflicted a heavy dose of the theory of weakly nonlocal solitary
waves on the reader and includes some modest additions to the extensive existing
theory of the TNLS equation. The only apology we can make to readers primarily
interested in numerical methods, and not this particular phenomenon, is to note
that numerical computations are sound only when built on a foundation of physical
understanding.

Eugene Wigner once said, ‘‘It is nice to know that the computer understands the
problem. But I would like to understand it, too.’’ His joke is a witty claim that one
can solve a problem numerically with much less thought than to solve it analytically.
This is sometimes true, but only sometimes. Often, theoreticians can happily live
with gaps in understanding which are intolerable to the machine. Our two appendi-
ces are a counterclaim to Wigner: To solve the TNLS equation numerically, one
must really understand it. And this is true of many other scientific computations
as well.

APPENDIX A: THEORY OF THE TNLS EQUATION

The general third-order nonlinear Schroedinger equation is

iAt 1
1
2

w0Azz 1 nuAu2A 2 ibAzzz 5 0, (A.1)

where A(X, t) is the envelope of a nonlinear wave packet:

u(x, t) 5 A(x 2 cgt, t) exp(ik[x 2 cpt]) 1 complex conjugate. (A.2)

The TNLS equation describes the evolution of the envelope only and its solutions
are generally complex-valued. It is written in a coordinate system that moves at
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the linear group velocity of a wave with wavenumber equal to that of the carrier
wave of the packet, i. e.,

z ; x 2 cg(k)t. (A.3)

The method of multiple scales, a singular perturbation scheme, shows that many
species of partial differential equations have solutions of the form of (A.2) in the
limit of small amplitude (Table 1).

The time-dependent TNLS equation can be reduced to our nonlinear boundary
value problem (1.1) in four stages. First, (A.1) can be reduced by simple rescalings
to an equation with coefficients all of absolute value one or one-half.

THEOREM A.1. If U(X, T; w0, n, b) solves

iUT 1 Asw0UZZ 1 nuUu2U 2 ibUZZZ 5 0, (A.4)

where w0 is the second derivative with respect to wavenumber k of the dispersion
relation, w(k), and n(k) is the ‘‘Landau constant,’’ then

U(Z, T) 5 rA SZ
L

,
T
MD , (A.5)

where A(z, t) satisfies

iAt 1 AsAzz 1 uAu2A 2 iAzzz 5 0 (A.6)

with

L 5
b
w0

, M 5
b2

(w0)3 , r 5
(w0)3/2

n1/2b
(A.7)

Proof. Substitution of (A.5) and (A.7) into (A.4).

The second step is to note that the general soliton contains a multiplicative factor
of exp(2ikx) which effectively shifts the wavenumber k of the carrier wave by k

without otherwise altering the dynamics. In studying soliton-soliton collisions, the
extra degree of freedom represented by k is useful. For a single solitary wave,
however, the wavenumber shift k is not useful because we can always redefine the
wavenumber k of the carrier wave so as to set k 5 0, as is done throughout this paper.

The third simplification is to observe that the relationships that connect the carrier
frequency shift g and group velocity shift c to « are terminating «-perturbation series
so that, as already done in (1.1), we can simply replace g by «2/2 and c by 2«2.
Grimshaw [26] has explained why these relationships are exact. In the ‘‘far field’’
where the core has decayed to the wing oscillations, the nonlinear term in the TNLS
equation can be neglected. Grimshaw’s asymptotic analysis shows that the core can
decay as exp(2«uxu) if and only if the series for g and c are terminating series.
(Corrections ‘‘beyond all orders’’ in « cannot be ruled out, however.)
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FIG. 15. uau versus L for « 5 1/15. Solid: numerical computations of a with 64 grid points. Dashed:
theoretical prediction, Eqs. (B.8)–(B.9).

The fourth simplification is to assume that the real part of the nanopteron is
symmetric with respect to X 5 0 and that the imaginary part is antisymmetric.
Grimshaw [26] proves that the wing oscillations must have equal amplitude, but this
does not rule out asymmetric core structures. Bound states of multiple cores in
which the cores are of slightly different sizes are a possibility. However, previous
work has left no doubt that there are solutions that satisfy these symmetry restrictions.

APPENDIX B: EIGENFUNCTIONS

For reasons too complicated to explain here (but see the author’s monograph
[39]), the most interesting nanopterons are those of minimal far field oscillations.
(One can show that a localized initial condition will spontaneously evolve to a state
that can be approximated by such a minimum-a nanopteron, or a sum of such
nanopterons, behind the ever-widening wave front.) These nanopterons with a 5

amin can be approximated by nanopteroidal waves, that is, by solutions of the same
differential equation but with boundary conditions of spatial periodicity with period
P. Figure 15 shows the computed amplitude of a versus the period divided by 2f.
Clearly, the amplitude of the wings can vary wildly with P. What values of P give
a 5 amin ? We can answer this question, at least approximately, by analyzing the
eigenfunctions of the linearized TNLS equation as done in the rest of this appendix.

The Jacobian operator J(Q), defined by (2.4), has a zero eigenvalue when
Q 5 Qsol(X), the nanopteron. In other words, there are nontrivial functions ej(X)
such that
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J(Qsol)ej 5 0, ;X. (B.1)

Because the TNLS equation is translationally invariant, it must have the X-
derivative of the soliton as one such eigenfunction. Since differentiation changes
symmetric functions into antisymmetric and vice versa, the parity of this translational
eigenfunction etrans(X) 5 Qsol,X is opposite that of the nanopteron or nanopteroidal
wave. The exploitation of symmetry (so that the real part of Qsol is approximated
by a cosine series) automatically filters this mode. Consequently, the Jacobian matrix
is nonsingular and the translational eigenfunction has no numerical significance.

It also has no physical significance in the sense that the new solution generated
by adding d etrans to a solution Qsol(X) merely gives the same solution with a
translation, that is,

Qsol(X) 1 detrans P Qsol(X 1 d). (B.2)

The other eigenfunction of zero eigenvalue exists only on the infinite spatial
interval, but it has profound implications for the spatially periodic problem, too. It
arises because the function

Q(X) 5 exp(2iX/2) (B.3)

solves the TNLS equation when the nonlinear term is neglected. (There are two
other homogeneous solutions to the constant coefficient, third-order equation that
approximates the TNLS equation in the ‘‘far field,’’ but these are unbounded as
uXu ⇒ y.) Because the cubically nonlinear term is O(«2) for the nanopteron, it
follows that exp(2iX/2) is also an approximate eigenfunction of J(Qsol) with an
error of O(«2).

This much was known to Grimshaw [26] and is implicit in the work of other
previous workers. To compute amin up to and including the O(«2) corrections, we
need a more accurate O(«) approximation to the eigenfunctions. This in turn will
give us an equally accurate formula for the spatial period that gives the minimum
a for a given «.

The eigenfunction can be approximated more accurately by generalizing the
WKB method to give

e2(X; «) p exp S2i
1
2

X 1 8i« tanh(«X)D . (B.4)

Without loss of generality, the nanopteron can be written in the form

Q(X) 5 A(X) exp(iJ(X)), (B.5)

where A(X) asymptotes to a constant (not necessarily the same constant) for X ⇒
6y and J asymptotes to a linear function of X. By examining the various cases,
one can show that the real part of Q(X) is symmetric with respect to the origin
and the imaginary part is antisymmetric if and only if (i) J(X) is antisymmetric
with respect to X, (ii) Re(A) is symmetric, and (iii) Im(A) is antisymmetric. This
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implies that while we may add de2(X; «) for small but arbitrary d to a nanopteron
to generate a new function that is also an approximate solution in the sense of an
error no larger than O(d 2), the multiplier d must be real to preserve the symmetries.
One may further show that if an arbitrary real multiple of the eigenfunction defined
by (B.4) is added to a nanopteron, the amplitude of Q(X) in the far field, i.e., uau,
is minimized when d is such that a is pure imaginary.

Let amin(«) be the minimum amplitude of the far field oscillations for a given «,
minimized over the eigenfunction multiplier d. (For nanopteroidal waves, apply the
same definition but minimized over the period P.) The general far field of the
nanopteron is then

Q(X) p 5(d 1 iamin) exp S2i
1
2

X 1 8i«D , X R y

(d 2 iamin) exp S2i
1
2

X 2 8i«D , X R 2y

. (B.6)

If we define the radiation coefficient a and far field phase F via

a ; amin 2 id, F ; arg(a), (B.7)

elementary trigonometric identities show

ua(«; F)u 5
amin(«)
cos(F)

. (B.8)

Equation (B.8) predicts resonances—unbounded amplitude of the far field oscilla-
tions—when the far field phase factor F is a root of the cosine. At the opposite
extreme, the wings are minimized when F 5 fm where m is any integer; in this
case, d 5 0 (i. e., the amplitude of the eigenfunction e2 is zero) and a 5 6amin .

For the nanopteron, that is, on the domain X [ [2y, y], the phase factor F is
simply an extra free parameter. When Q(X) is required to be spatially periodic
with period P, however, the phase difference between the two asymptotic limits in
(B.9) at X 5 6P/2 must be a multiple of 2f, or else Q will be discontinuous:

P
2

2 16« 2 2f 2 f 5 2fm, m 5 integer. (B.9)

(This assumes that P @ 1/«, which is necessary so that the nanopteroidal wave may
be approximated by the nanopteron on X [ [2P/2, P/2].) For fixed period, this
can be solved for the far field phase F and thence for a. Alternatively, if we define
L via

P 5 2fL (B.10)

we can solve for those values of L for which we obtain resonance or a minimum
far field:
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Lresonance 5 2m 1
16
f

«, m 5 integer (B.11)

Lmin 5 2m 1 1 1
16
f

«, m 5 integer. (B.12)

We expect a pole in a(L) wherever L is an odd integer and a minima where L is
an even integer, both slightly shifted by (16/f)«.

Figure 15 shows a versus L (5 the period P/2f). The minima at L 5 73.364 is
close to the prediction of Eq. (3.16), Lpred573.3395; L is shifted from the odd integer
by about 6.7% too little by the analytical approximation, (16/f)«. Similarly, the
predicted and theoretical peaks are very close. The error increases as a ⇒ y because
the nanopteron is no longer ‘‘weakly’’ nonlocal when the wings are large, and the
linear far field analysis is no longer very accurate.

It seems likely on the basis of dynamical systems theory that sufficiently close
to a resonance, TNLS solutions are chaotic and steadily moving periodic solutions
do not exist except perhaps at discrete values of L within the chaotic region.

The Jacobian operator on the spatially periodic domain does not have an eigen-
function of zero eigenvalue. However, the Fourier components with j 5 L/2 6

1/2 are sufficiently close to the infinite interval eigenfunction (B.4) so as to have
small eigenvalues. When the spatial period is chosen to minimize a, the resonant
wavenumber K 5 21/2 (⇔ j 5 L/2) corresponds to a Fourier degree j which is
halfway between two integers so there is a near-resonance, but no exact resonance.
The two near-resonant Fourier coefficients are given special treatment as reported
in Section 3, but the small eigenvalues were not so small as to make this special
treatment really necessary, as explained above.

Eq. (B.16), which is correct up to and including O(«), makes it possible to compute
the proportionality constant in front of a up to and including O(«2). (The accuracy
limit is O(«2) instead of merely O(«) because close to the value of L which gives
amin , the dependence of a on L is flat [zero slope at the minimum itself]. Thus, an
O(«2) error in L contributes to amin only at O(«3).)
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